Metodología para la determinación de pesticidas organoclorados mediante cromatografía de gases acoplado espectrometría de masas y detector de captura de electrones

Mendieta, Claudia J.1; Ortega, Nicole A.2; Solano-Cueva, Natalí3; Figueroa, Jorge G.3

1Universidad Técnica Particular de Loja, Titulación de Ingeniería Química, Loja, Ecuador
2Universidad Técnica Particular de Loja, Titulación de Ingeniero en Alimentos, Loja, Ecuador
3Universidad Técnica Particular de Loja, Departamento de Química y Ciencias Exactas, Loja, Ecuador

Resumen: El uso de pesticidas en Ecuador es muy amplio y las concentraciones utilizadas son superiores a los límites máximos permitidos. Las agencias que controlan este tipo de compuestos no cuentan con tecnología sofisticada como tiempo de vuelo, utilizando el mismo equipo para distintos análisis. Por esta razón, en algunos casos dos columnas son instaladas simultáneamente, lo que podría llegar a ser un problema con la temperatura máxima que se puede utilizar. El objetivo de este trabajo fue desarrollar una metodología que permita cuantificar 32 pesticidas organoclorados mediante cromatografía de gases utilizando los detectores de captura de electrones y espectrometría de masas con temperatura reducida. Se evaluaron diferentes condiciones de rampa de temperatura, fase estacionaria, temperatura del inyector, flujo del gas de arrastre, flujo de purga y tipo de inyección. Únicamente la temperatura del inyector y el flujo del gas de arrastre no tuvieron efecto sobre el área de los picos. Empleando la columna DB5-ms y una misma rampa de temperatura, se pudieron separar 24 pesticidas. Pese a que se emplearon distintos gradientes de temperatura, tres pares de pesticidas compartieron el mismo tiempo de retención, pero aplicando el monitoreo de iones seleccionados se logró identificarlos. El coeficiente de determinación de las curvas de calibración fue mayor a 0,99. Los límites de detección encontrados fueron menores a los límites máximos permitidos.

Palabras clave: Cromatografía de gases, pesticidas organoclorados, validación.

Development of a Method for the Quantification of Organochlorine Pesticides by GC-ECD-MS

Abstract: In Ecuador the use of pesticides has been a problem due to the concentrations used are higher than the maximum allowable limits. The agencies that control this type of compounds do not have sophisticated technologies like tandem mass spectrometry or time of flight, and use the same equipment for different analysis. For these reason sometimes two columns are installed simultaneously, which consequently can be a problem with the maximum temperature that can use. The aim of this work was to develop a methodology to quantify 32 organochlorine pesticides by gas chromatography using electron capture detector and mass spectrometry with a low oven temperature. Different conditions of temperature ramp, stationary phase, injector temperature, carrier gas flow, purge flow and injection mode were evaluated. Only injector temperature and carrier gas flow had no effect on the peak area. Using a DB5-ms column and the same temperature ramp, 24 pesticides were separated. Although different oven temperature programs were tested, three pairs of pesticides shared the same elution time, but the identification was achieved using selected ion monitoring mode. The correlation coefficient of the calibration curves was greater than 0,99. The detection limits found were lower than the maximum residue levels allowed.

Keywords: Gas chromatography, organochlorine pesticides, validation.

Descargar PDF

REFERENCES

  • Alder, L., Greulich, K., Kempe, G., & Vieth, B. (2006). Residue analysis of 500 high priority pesticides: Better by GC–MS or LC–MS/MS? Mass Spectrometry Reviews, 25(6), 838-865.
  • Cajka, T., Hajslova, J., Lacina, O., Mastovska, K., & Lehotay, S. J. (2008). Rapid analysis of multiple pesticide residues in fruit-based baby food using programmed temperature vaporiser injection–low-pressure gas chromatography–high-resolution time-of-flight mass spectrometry. Journal of Chromatography A, 1186(1–2), 281-294.
  • Crissman, C. C., Cole, D. C., & Carpio, F. (1994). Pesticide use and farm worker health in Ecuadorian potato production. American Journal of Agricultural Economics, 76(3), 593-597.
  • Chasteen, T. G. (s. f.). Split/ Splitless gas chromatography injection. In). Texas: Sam Houston State University.
  • Dömötörová, M., & Matisová, E. (2008). Fast gas chromatography for pesticide residues analysis. Journal of Chromatography A, 1207(1–2), 1-16.
  • Donald C, C., Sherwood, S., Crissman, C., Barrera, V., & Espinosa, P. (2002). Pesticides and health in highland Ecuadorian potato production: Assessing impacts and developing responses. International Journal of Occupational and Environmental Health, 8(3), 182-190.
  • Florax, R. J. G. M., Travisi, C. M., & Nijkamp, P. (2005). A meta-analysis of the willingness to pay for reductions in pesticide risk exposure. European Review of Agricultural Economics, 32(4), 441-467.
  • Goñi, F., López, R., Etxeandia, A., Millán, E., Vives, A., & Amiano, P. (2009). Method for the determination of selected organochlorine pesticides and polychlorinated biphenyls in human serum based on a gel permeation chromatographic clean-up. Chemosphere, 76(11), 1533-1539.
  • Hernández, F., Pozo, O. J., Sancho, J. V., Bijlsma, L., Barreda, M., & Pitarch, E. (2006). Multiresidue liquid chromatography tandem mass spectrometry determination of 52 non gas chromatography-amenable pesticides and metabolites in different food commodities. Journal of Chromatography A, 1109(2), 242-252.
  • Hurtig, A. K., Sebastián, M. S., Soto, A., Shingre, A., Zambrano, D., & Guerrero, W. (2003). Pesticide Use among Farmers in the Amazon Basin of Ecuador. Archives of Environmental Health: An International Journal, 58(4), 223-228.
  • LeDoux, M. (2011). Analytical methods applied to the determination of pesticide residues in foods of animal origin. A review of the past two decades. Journal of Chromatography A, 1218(8), 1021-1036.
  • Li, J., Liu, D., Wu, T., Zhao, W., Zhou, Z., & Wang, P. (2014). A simplified procedure for the determination of organochlorine pesticides and polychlorobiphenyls in edible vegetable oils. Food Chemistry, 151(0), 47-52.
  • Martínez Vidal, J. L., Pablos Espada, M. C., Garrido Frenich, A., & Arrebola, F. J. (2000). Pesticide trace analysis using solid-phase extraction and gas chromatography with electron-capture and tandem mass spectrometric detection in water samples. Journal of Chromatography A, 867(1–2), 235-245.
  • Masci, M., Orban, E., & Nevigato, T. (2014). Organochlorine pesticide residues: An extensive monitoring of Italian fishery and aquaculture. Chemosphere, 94(0), 190-198.
  • Matisová, E., & Dömötörová, M. (2003). Fast gas chromatography and its use in trace analysis. Journal of Chromatography A, 1000(1–2), 199-221.
  • Moon, H.-B., Kim, H.-S., Choi, M., Yu, J., & Choi, H.-G. (2009). Human health risk of polychlorinated biphenyls and organochlorine pesticides resulting from seafood consumption in South Korea, 2005–2007. Food and Chemical Toxicology, 47(8), 1819-1825.
  • Paz-y-Miño, C., Bustamante, G., Sánchez, M. E., & Leone, P. E. (2002). Cytogenetic monitoring in a population occupationally exposed to pesticides in Ecuador. Environmental Health Pespectives, 110(11), 1077-1080.
  • Peré-Trepat, E., Lacorte, S., & Tauler, R. (2007). Alternative calibration approaches for LC–MS quantitative determination of coeluted compounds in complex environmental mixtures using multivariate curve resolution. Analytica Chimica Acta, 595(1–2), 228-237.
  • Pimentel, D. (2005). Environmental and economic costs of the application of pesticides primarily in the United States’. Environment, Development and Sustainability, 7(2), 229-252.
  • Rial-Otero, R., Gaspar, E. M., Moura, I., & Capelo, J. L. (2007). Chromatographic-based methods for pesticide determination in honey: An overview. Talanta, 71(2), 503-514.
  • Soceanu, A., Dobrinas, S., Stanciu, G., Popescu, V., & Epure, D. T. (2012). Evaluation of pesticides residues in fresh fruits. Revista de Chimie, 63(5), 455-458.
  • Stashenko, E., & Martínez, J. R. (2011). Algunos consejos útiles para el análisis cromatográfico de compuestos orgánicos volátiles. Scientia Chromatographica, 3(3).
  • Štěpán, R., Tichá, J., Hajšlová, J., Kovalczuk, T., & Kocourek, V. (2005). Baby food production chain: Pesticide residues in fresh apples and products. Food Additives & Contaminants, 22(12), 1231-1242.
  • Wu, C., Luo, Y., Gui, T., & Huang, Y. (2014). Concentrations and potential health hazards of organochlorine pesticides in shallow groundwater of Taihu Lake region, China. Science of The Total Environment, 470–471(0), 1047-1055.
  • Xu, M.-L., Liu, J.-B., & Lu, J. (2013). Determination and control of pesticide residues in beverages: a review of extraction techniques, chromatography, and rapid detection methods. Applied Spectroscopy Reviews, 49(2), 97-120.
  • Yang, F. Q., Li, S. P., Zhao, J., Lao, S. C., & Wang, Y. T. (2007). Optimization of GC–MS conditions based on resolution and stability of analytes for simultaneous determination of nine sesquiterpenoids in three species of Curcuma rhizomes. Journal of Pharmaceutical and Biomedical Analysis, 43(1), 73-82.